2022

Author(s): Nardino M, Cremonini L, Crisci A, Georgiadis T, Guerri G, Morabito M, Fiorillo E

Remotely sensed Land Surface Temperature (LST) is widely used to characterize Surface Urban Heat Island (SUHI) intensity and spatial variability. SUHI may differ significantly from the Urban Heat Island (UHI), which is related to air temperature and is more representative of human wellbeing. The lack of information and results on UHI development is due to the difficulty in having measurements with high spatial density within the city and the uncertainties in finding relationships between air and surface temperatures. Characterizing UHI is fundamental when dealing with human thermal wellbeing especially when extreme events occur. A new index, named Urban Heatwave Thermal Index (UHTI), was presented here to quantify daytime air temperature variability patterns in an urban environment during a meteorological heatwave. UHTI integrates a) air temperature recorded by local sensors; b) structural microclimatic Envi-met fluidodynamic modeling simulations; and c) remotely sensed environmental indicators. UHTI is a reliable representation of thermal criticalities in the city for its inhabitants. A case study on Bologna (Italy) municipality is presented. Moreover, UHTI was calculated and compared with the Urban Thermal Field Variance Index (UTFVI), commonly used for urban climate character-ization. Results showed a high degree of correlation (R2 = 0.795) between the two indexes; re-sidual mapping and hot-spot detection indicated that their biggest differences are next to dense urban fabric areas like historical centers and water body areas.

DOI: https://dx.doi.org/10.1016/j.uclim.2022.101317