2020
Author(s): Rivera-Caravaca JM, Roldán V, Vicente V, Lip GYH, Marín F
OBJECTIVE: To test the hypothesis that particulate matter with an aerodynamic diameter of less than 10 ?m (PM(10)) and temperature are associated with an increased risk of adverse clinical outcomes in patients with atrial fibrillation (AF) taking vitamin K antagonists (VKAs). PATIENTS AND METHODS: We included patients with AF whose condition was stable while taking VKAs (international normalized ratio, 2.0 to 3.0) for 6 months seen in a tertiary hospital (recruitment from May 1, 2007, to December 1, 2007). During a median follow-up of 6.5 years (interquartile range, 4.3 to 7.9 years), ischemic strokes, major bleeding, adverse cardiovascular events, and mortality were recorded. From 2007 to 2016, data on average temperature and PM(10) were compared with clinical outcomes. RESULTS: The study group included 1361 patients (663 [48.7%] male; median age, 76 years [interquartile range, 71 to 81 years]). High PM(10) and low temperatures were associated with higher risk of major bleeding (adjusted hazard ratio [aHR], 1.44; 95% CI, 1.22 to 1.70 and aHR, 1.03; 95% CI, 1.01 to 1.05, respectively) and mortality (aHR, 1.50; 95% CI, 1.34 to 1.69 and aHR, 1.04; 95% CI, 1.02 to 1.06, respectively); PM(10) was also associated with ischemic stroke and temperature with cardiovascular events. The relative risk (RR) for cardiovascular events and mortality increased in months in the lower quartile of temperature (RR, 1.12; 95% CI, 1.04 to 1.21 and RR, 1.41; 95% CI, 1.15 to 1.74, respectively). Comparing seasons, there were higher risks of cardiovascular events in spring, autumn, and winter than in summer, whereas the risk of mortality increased only in winter. CONCLUSION: In patients with AF taking VKAs, high PM(10) and low temperature were associated with increased risk of ischemic stroke and cardiovascular events, respectively. Both factors increased major bleeding and mortality risks, which were higher during colder months and seasons.
DOI: https://dx.doi.org/10.1016/j.mayocp.2020.05.046