2019

Author(s): Maurer M, Klemm O, Lokys HL and Lin NH

This study provides insight into how the visibility in Taiwan has varied over time and what the main drivers of these visibility changes are. From 1985 to 2016, urban inland sites showed increases in visibility and decreases in the frequency of hazy and/or foggy days, whereas urbanized and rural coastal regions either showed no clear trend or even an overall decrease in visibility. Over the most recent 5 to 10 years, a consistent increase in the visibility and decrease in the haze frequency has been found for most of the stations, except for the rural to suburban regions. In general, visibility is driven by the relative humidity (rH) and the mass concentration of aerosol particles (PM). On the one hand, the combination of climate change and urbanization, resulting in a rise in temperature (on average, + 0.035 degrees C y(-1)) and an associated overall decrease in rH (on average, -0.125% y(-1)), has had a positive influence on long-term visibility in the cities of Taiwan. On the other hand, improvements in air quality supported the increase in visibility during the late 2000s and early 2010s. Our results show an almost exponential relationship between visibility and PM10. At lower PM10 levels, the visibility is more sensitive to changes in the PM10. Thus, the influence of the long-term PM10 on visibility becomes weaker at high PM10 levels. Consequently, over the long term, the PM10 more strongly influenced the visibility trends at the northern urban stations, which had lower PM10 concentrations to begin with. At the southern urban stations, the PM10 concentrations were generally higher and hence were less of a factor in variations in visibility. Therefore, the visibility trends at these sites were more related to changes in rH until about 2011, at which time these regions reached a lower level of pollution.

Journal: Aerosol and Air Quality Research